

Electric Circuits

James S. Kang
California State Polytechnic University, Pomona

$:$| CENGAGE |
| :--- |
| Learning |

Australia •Brazil •Mexico •Singapore •United Kingdom •United States

CENGAGE
Learning*

Electric Circuits, First Edition

James S. Kang
Product Director, Global Engineering: Timothy L. Anderson

Associate Media Content Developer: Ashley Kaupert
Product Assistant: Alexander Sham
Marketing Manager: Kristin Stine
Director, Higher Education Production: Sharon L. Smith
Senior Content Project Manager: Kim Kusnerak
Production Service: MPS Limited
Senior Art Director: Michelle Kunkler
Cover/Internal Designer: Grannan Graphic Design Ltd.
Cover Image: Dabarti CGI/Shutterstock.com
Internal Images:
©Daumantas Liekis/Shutterstock.com;
©iStockPhoto.com/NesneJkraM;
© iStockPhoto.com/Denis Dryashkin;
©iStockPhoto.com/Zorandimzr
Intellectual Property
Analyst: Christine Myaskovsky
Project Manager: Sarah Shainwald
Text and Image Permissions Researcher: Kristiina Paul
Manufacturing Planner: Doug Wilke

(C) 2018 Cengage Learning ${ }^{\circledR}$

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced or distributed in any form or by any means, except as permitted by U.S. copyright law, without the prior written permission of the copyright owner.

For product information and technology assistance, contact us at
Cengage Learning Customer \& Sales Support, 1-800-354-9706.
For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions. Further permissions questions can be emailed to permissionrequest@cengage.com.

Library of Congress Control Number: 2016955676
© 2016 Cadence Design Systems, Inc. PSpice ${ }^{\circledR}$ All rights reserved worldwide. Cadence and the Cadence logo are registered trademarks of Cadence Design Systems, Inc. All others are the property of their respective holders.

Unless otherwise noted, all items © Cengage Learning.
ISBN: 978-1-305-63521-0

Cengage Learning

20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions with employees residing in nearly 40 different countries and sales in more than 125 countries around the world. Find your local representative at www.cengage.com.

Cengage Learning products are represented in Canada by Nelson Education Ltd.

To learn more about Cengage Learning Solutions, visit
www.cengage.com/engineering.
Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com.

Printed in the United States of America Print Number: $1 \quad$ Print Year: 2016

Preface \mathbf{x}
About the Author xvi

CHAPTER 1

VOLTAGE, CURRENT, POWER, AND SOURCES 1

1.1 Introduction 1
1.2 International System of Units $\mathbf{1}$
1.3 Charge, Voltage, Current, and Power 4
1.3.1 Electric Charge 4
1.3.2 Electric Field 4
1.3.3 Voltage 5
1.3.4 Current 7
1.3.5 Power 9
1.4 Independent Sources 10
1.4.1 Direct Current Sources and Alternating Current Sources 11
1.5 Dependent Sources 15
1.5.1 Voltage-Controlled Voltage Source (VCVS) 16
1.5.2 Voltage-Controlled Current Source (VCCS) 16
1.5.3 Current-Controlled Voltage Source (CCVS) 16
1.5.4 Current-Controlled Current Source (CCCS) 16
1.6 Elementary Signals 17
1.6.1 Dirac Delta Function 17
1.6.2 Step Function 19
1.6.3 Ramp Function 21
1.6.4 Exponential Decay 23
1.6.5 Rectangular Pulse and Triangular Pulse 24

SUMMARY 27
PROBLEMS 27

CHAPTER 2

CIRCUIT LAWS 31

2.1 Introduction
 31

2.2 Circuit 31
2.3 Resistor 33
2.4 Ohm's Law 35
2.5 Kirchhoff's Current Law (KCL) $\mathbf{3 8}$
2.6 Kirchhoff's Voltage Law (KVL) 46
2.7 Series and Parallel Connection
of Resistors 53
2.7.1 Series Connection of Resistors 53
2.7.2 Parallel Connection of Resistors 58
2.8 Voltage Divider Rule 74
2.8.1 Wheatstone Bridge 80
2.9 Current Divider Rule 82
2.10 Delta-Wye ($\Delta-\mathrm{Y}$) Transformation and Wye-Delta(Y- Δ) Transformation 91
2.11 PSpice and Simulink 100
2.11.1 Simulink 104
SUMMARY 104
PROBLEMS 105
CHAPTER 3
CIRCUIT ANALYSIS METHODS 117
3.1 Introduction 117
3.2 Nodal Analysi 118
3.3 Supernode 142
3.4 Mesh Analysis 153
3.5 Supermesh 175
3.6 PSpice and Simulink 190
3.6.1 PSPICE 1903.6.2 VCVS 190
3.6.3 VCCS 191
3.6.4 CCVS 192
3.6.5 CCCS 193
3.6.6 Simulink 193
SUMMARY 194
PROBLEMS 194
CHAPTER 4
CIRCUIT THEOREMS 208
4.1 Introduction 208
4.2 Superposition Principle 209
4.3 Source Transformations 221
4.4 Thévenin's Theorem 234
4.4.1 Finding the Thévenin Equivalent Voltage $V_{\text {th }} 235$
4.4.2 Finding the Thévenin Equivalent Resistance $R_{\text {th }} 235$
4.5 Norton's Theorem 263
4.5.1 Finding the Norton Equivalent Current $I_{\mathrm{n}} 264$
4.5.2 Finding the Norton Equivalent Resistance $R_{\mathrm{n}} 264$
4.5.3 Relation Between the Thévenin EquivalentCircuit and the Norton Equivalent Circuit 264
4.6 Maximum Power Transfer 284
4.7 PSpice 296
4.7.1 Simulink 299
SUMMARY 300
PROBLEMS 301
CHAPTER 5
OPERATIONAL AMPLIFIER CIRCUITS 314
5.1 Introduction 314
5.2 Ideal Op Amp 315
5.2.1 Voltage Follower 3
5.3 Sum and Difference 333
5.3.1 Summing Amplifier (Inverting
Configuration) 333
5.3.2 Summing Amplifier (Noninverting
Configuration) 336
5.3.3 Alternative Summing Amplifier (NoninvertingConfiguration) 3415.3.4 Difference Amplifier 343
5.4 Instrumentation Amplifier 346
5.5 Current Amplifier 347
5.5.1 Current to Voltage Converter (TransresistanceAmplifier) 348
5.5.2 Negative Resistance Circuit 349
5.5.3 Voltage-to-Current Converter (TransconductanceAmplifier) 350
5.6 Analysis of Inverting Configuration 351
5.6.1 Input Resistance 354
5.6.2 Output Resistance 354
5.7 Analysis of Noninverting Configuration 358
5.7.1 Input Resistance 360
5.7.2 Output Resistance 360
5.8 PSpice and Simulink 363
SUMMARY 370
PROBLEMS 371
CHAPTER 6
CAPACITORS AND INDUCTORS 379
6.1 Introduction 379
6.2 Capacitors 380
6.2.1 Sinusoidal Input to Capacitor 389
6.3 Series and Parallel Connection of Capacitors 390
6.3.1 Series Connection of Capacitors 3906.3.2 Parallel Connection of Capacitors 392
6.4 Op Amp Integrator and Op Amp
Differentiator 395
6.4.1 Op Amp Integrator 395
6.4.2 Op Amp Differentiator 397
6.5 Inductors 397
6.5.1 Sinusoidal Input to Inductor 407
6.6 Series and Parallel Connection of Inductors 408
6.6.1 Series Connection of Inductors 4086.6.2 Parallel Connection of Inductors 409
6.7 PSpice and Simulink 413
SUMMARY 416
PROBLEMS 416
CHAPTER 7
RCAND RL CIRCUITS 424
7.1 Introduction 424
7.2 Natural Response of $R C$ Circuit 424
7.2.1 Time Constant 428
7.3 Step Response of $R C$ Circuit 435
7.3.1 Initial Value 438
7.3.2 Final Value 438
7.3.3 Time Constant 438
7.3.4 Solution to General First-Order Differential
Equation with Constant Coefficient andConstant Input 440
7.4 Natural Response of $R L$ Circuit 448
7.4.1 Time Constant 450
7.5 Step Response of $R L$ Circuit 459
7.5.1 Initial Value 462
7.5.2 Final Value 462
7.5.3 Time Constant 462
7.5.4 Solution to General First-Order DifferentialEquation with Constant Coefficient andConstant Input 464
7.6 Solving General First-Order Differential
Equations 476
7.7 PSpice and Simulink 488
SUMMARY 494
PROBLEMS 495
CHAPTER 8
8.1 Introduction 505
8.2 Zero Input Response of Second-Order Differential Equations 505
8.2.1 Case 1: Overdamped ($\alpha>\omega_{0}$ or $a_{1}>2 \sqrt{a_{0}}$ or $\zeta>1) 507$
8.2.2 Case 2: Critically Damped ($\alpha=\omega_{0}$ or $a_{1}=2 \sqrt{a_{0}}$
or $\zeta=1$) 509
8.2.3 Case 3: Underdamped ($\alpha<\omega_{0}$ or $a_{1}<2 \sqrt{a_{0}}$
or $\zeta<1$) 510
8.3 Zero Input Response of Series RLC Circuit511
8.3.1 Case 1: Overdamped ($\alpha>\omega_{0}$ or $a_{1}>2 \sqrt{a_{0}}$ or $\zeta>1) 513$
8.3.2 Case 2: Critically Damped ($\alpha=\omega_{0}$ or $a_{1}=2 \sqrt{a_{0}}$ or $\zeta=1) 513$
8.3.3 Case 3: Underdamped ($\alpha<\omega_{0}$ or $a_{1}<2 \sqrt{a_{0}}$ or $\zeta<1) 513$
8.4 Zero Input Response of Parallel RLC Circuit 530
8.4.1 Case 1: Overdamped ($\alpha>\omega_{0}$ or $a_{1}>2 \sqrt{a_{0}}$ or $\zeta>1$) 532
8.4.2 Case 2: Critically Damped ($\alpha=\omega_{0}$ or $a_{1}=2 \sqrt{a_{0}}$ or $\zeta=1$) 532
8.4.3 Case 3: Underdamped ($\alpha<\omega_{0}$ or $a_{1}<2 \sqrt{a_{0}}$ or $\zeta<1$) 532
8.5 Solution of the Second-Order Differential Equations to Constant Input $\mathbf{5 4 5}$
8.5.1 Particular Solution 545
8.5.2 Case 1: Overdamped ($\alpha>\omega_{0}$ or $a_{1}>2 \sqrt{a_{0}}$ or $\zeta>1$) 546
8.5.3 Case 2: Critically Damped ($\alpha=\omega_{0}$ or $a_{1}=2 \sqrt{a_{0}}$ or $\zeta=1$) 547
8.5.4 Case 3: Underdamped ($\alpha<\omega_{0}$ or $a_{1}<2 \sqrt{a_{0}}$ or $\zeta<1$) 548
8.6 Step Response of a Series RLC Circuit 549
8.6.1 Case 1: Overdamped $\left(\alpha>\omega_{0}\right.$ or $a_{1} / 2>\sqrt{a_{0}}$ or $\zeta>1$) 550
8.6.2 Case 2: Critically Damped ($\alpha=\omega_{0}$ or $a_{1}=2 \sqrt{a_{0}}$ or $\zeta=1$) 552
8.6.3 Case 3: Underdamped ($\alpha<\omega_{0}$ or $a_{1}<2 \sqrt{a_{0}}$ or $\zeta<1$) 553
8.7 Step Response of a Parallel RLC Circuit 566
8.7.1 Case 1: Overdamped ($\alpha>\omega_{0}$ or $a_{1}>2 \sqrt{a_{0}}$ or $\zeta>1$) 567
8.7.2 Case 2: Critically Damped ($\alpha=\omega_{0}$ or $a_{1}=2 \sqrt{a_{0}}$ or $\zeta=1$) 569
8.7.3 Case 3: Underdamped ($\alpha<\omega_{0}$ or $a_{1}<2 \sqrt{a_{0}}$ or $\zeta<1$) 570
8.8 General Second-Order Circuits 580
8.9 PSpice and Simulink $\mathbf{6 0 0}$
8.9.1 Solving Differential Equations Using Simulink 600 8.9.2 Solving Differential Equations Using PSpice 601

SUMMARY 603

PROBLEMS 604

CHAPTER 9

PHASORS AND IMPEDANCES 615

9.1 Introduction 615
9.2 Sinusoidal Signals 615
9.2.1 Cosine Wave 6159.2.2 Sine Wave 618
9.3 RMS Value 620
9.4 Phasors 624
9.4.1 Representing Sinusoids in Phasor 627
9.4.2 Conversion Between Cartesian Coordinate
System (Rectangular Coordinate System) and
Polar Coordinate System 629
9.4.3 Phasor Arithmetic 635
9.5 Impedance and Admittance 638
9.5.1 Resistor 639
9.5.2 Capacitor 640
9.5.3 Inductor 642
9.6 Phasor-Transformed Circuit 644
9.7 Kirchhoff's Current Law and Kirchhoff's Voltage Law for Phasors 649
9.8 Series and Parallel Connection of Impedances 652
9.9 Delta-Wye ($\boldsymbol{\Delta}-\mathrm{Y}$) and Wye-Delta (Y- $\boldsymbol{\Delta}$) Transformation 656
9.10 PSpice and Simulink 661
SUMMARY 664
PROBLEMS 664
CHAPTER 10
ANALYSIS OF PHASOR-TRANSFORMED CIRCUITS 668
10.1 Introduction 668
10.2 Phasor-Transformed Circuits 669
10.3 Voltage Divider Rule 669
10.4 Current Divider Rule 672
10.5 Nodal Analysis 676
10.6 Mesh Analysis 678
10.7 Superposition Principle 681
10.8 Source Transformation 683
10.9 Thévenin Equivalent Circuit 686
10.9.1 Finding the Thévenin EquivalentVoltage $V_{\text {th }} 687$10.9.2 Finding the Thévenin EquivalentImpedance $Z_{\text {th }} 687$
10.10 Norton Equivalent Circuit 689
10.11 Transfer Function 692
10.11.1 Series RLC Circuits 701
10.11.2 Parallel RLC Circuits 707
10.12 PSpice and Simulink 718
SUMMARY 721
PROBLEMS 722

CHAPTER 11

AC POWER 733

11.1 Introduction
 733

11.2 Instantaneous Power, Average Power, Reactive Power, Apparent Power 733
11.3 Complex Power 739
11.4 Conservation of AC Power 749
11.5 Maximum Power Transfer 752
11.5.1 Maximum Power Transfer for NortonEquivalent Circuit 756
11.6 Power Factor Correction (PFC) 756
11.7 PSpice and Simulink 767
SUMMARY 770
PROBLEMS 770
CHAPTER 12
THREE-PHASE SYSTEMS 778
12.1 Introduction 778
12.2 Three-Phase Sources 778
12.2.1 Negative Phase
782
12.3 Balanced Y-Y Circuit
12.3.1 Balanced Y-Y Circuit with Wire Impedance 786
12.4 Balanced Y- Δ Circuit 792
12.4.1 Balanced Y- Δ Circuit w
12.5 Balanced $\boldsymbol{\Delta}$ - $\boldsymbol{\Delta}$ Circuit 801
12.5.1 Balanced Δ - Δ Circuit with Wire Impedance 805
12.6 Balanced Δ - Y Circuit 813
12.6.1 Balanced Δ - Y Cir uit with Wire Impedance 816
12.7 PSpice and Simulink 821
SUMMARY 825
PROBLEMS 825
CHAPTER 13
MAGNETICALLY COUPLED CIRCUITS 829
13.1 Introduction 829
13.2 Mutual Inductance 829
13.2.1 Faraday's Law 83
13.2.2 Mutual Inductance 831
13.2.3 Mutual Inductance of a Second Coil Wrapped
Around a Solenoid 833
13.3 Dot Convention and Induced Voltage 83513.3.1 Combined Mutual and Self-InductionVoltage 838
13.4 Equivalent Circuits 848
13.5 Energy of Coupled Coils 853
13.6 Linear Transformer 855
13.7 Ideal Transformer 865
13.7.1 Autotransformer 874
13.8 PSpice and Simulink 879
SUMMARY 881
PROBLEMS 881
CHAPTER 14
THE LAPLACE TRANSFORM 886
14.1 Introduction 886
14.2 Definition of the Laplace Transform 887
14.3 Properties of the Laplace Transform 891
14.3.1 Linearity Property (Superposition Principle) 893
14.3.2 Time-Shifting Property 894
14.3.3 Frequency Translation Property 895
14.3.4 Multiplication by $\cos \left(\omega_{0} t\right) 898$
14.3.5 Multiplication by $\sin \left(\omega_{0} t\right) 899$
14.3.6 Time Differentiation Property 900
14.3.7 Integral Property 902
14.3.8 Frequency Differentiation Property 904
14.3.9 Frequency Integration Property 907
14.3.10 Time-Scaling Property 908
14.3.11 Initial Value Theorem and Final Value
Theorem 910
14.3.12 Initial Value Theorem 910
14.3.13 Final Value Theorem 912
14.4 Inverse Laplace Transform 914
14.4.1 Partial Fraction Expansion 923
14.4.2 Simple Real Poles 925
14.4.3 Complex Poles 928
14.4.4 Repeated Poles 934
14.5 Solving Differential Equations Using the
Laplace Transform 942
14.6 PSpice and Simulink 947
SUMMARY 950
PROBLEMS 951
CHAPTER 15
CIRCUIT ANALYSIS IN THE s-DOMAIN 954
15.1 Introduction 954
15.2 Laplace-Transformed Circuit Elements 955
15.2.1 Resistor 955
15.2.2 Capacitor 956
15.2.3 Inductor 957
15.3 Laplace-Transformed Circuit 958
15.3.1 Voltage Divider Rule 958
15.3.2 Current Divider Rule 961
15.4 Nodal Analysis 964
15.5 Mesh Analysis 971
15.6 Thévenin Equivalent Circuit in the s-Domain 980
15.7 Norton Equivalent Circuit in the s-Domain 990
15.8 Transfer Function 997
15.8.1 Sinusoidal Input 998
15.8.2 Poles and Zeros 999
15.9 Convolution 1020
15.9.1 Commutative Property 1021
15.9.2 Associative Property 1021
15.9.3 Distributive Property 1021
15.9.4 Time-Shifting Property 1021
15.10 Linear, Time-Invariant (LTI) System 1037
15.10.1 Impulse Response 1038
15.10.2 Output of Linear Time-Invariant System 1038
15.10.3 Step Response of LTI System 1039
15.11 Bode Diagram 1040
15.11.1 Linear Scale 1040
15.11.2 dB Scale 1041
15.11.3 Bode Diagram of Constant Term 104415.11.4 Bode Diagram of $H(s)=s+10001044$15.11.5 Bode Diagram of $H(s)=100 / \mathrm{s} 1045$15.11.6 Bode Diagram of $H(s)=s / 10001046$15.11.7 Bode Diagram of $H(s)=10^{4} /(s+100)^{2} 1047$15.11.8 Complex Poles and Zeros 1059
15.12 Simulink 1062
SUMMARY 1064
PROBLEMS 1064
CHAPTER 16
FIRST- AND SECOND-ORDER ANALOG FILTERS 1074
16.1 Introduction 1074
16.2 Magnitude Scaling and Frequency Scaling 1075
16.2.1 Magnitude Scaling 10716.2.2 Frequency Scaling 107616.2.3 Magnitude and Frequency Scaling 1078
16.3 First-Order LPF 1079
16.4 First-Order HPF 1081
16.5 Second-Order LPF 1084
16.5.1 Frequency Response 1085
16.5.2 Magnitude Response 1085
16.5.3 Phase Response 1086
16.5.4 Series RLC LPF 1087
16.5.5 Parallel RLC LPF 1088
16.5.6 Sallen-Key Circuit for the Second-Order LPF 109016.5.7 Equal R, Equal C Method 1092
16.5.8 Normalized Filter 1093
16.5.9 Unity Gain Method 1098
16.6 Second-Order HPF Design 1100
16.6.1 Frequency Response 1101
16.6.3 Phase Response 1102
16.6.4 Series RLC HPF 1102
16.6.5 Parallel RLC HPF 1104
16.6.6 Sallen-Key Circuit for the

Second-Order HPF 1105
16.6.7 Equal R and Equal C Method 1108
16.6.8 Normalization 1109
16.6.9 Unity Gain Method 1110
16.6.10 Normalization 1111
16.7 Second-Order Bandpass Filter Design 1113
16.7.1 Frequency Response 1113
16.7.2 Magnitude Response 1113
16.7.3 Phase Response 1116
16.7.4 Series RLC Bandpass Filter 1116
16.7.5 Parallel RLC Bandpass Filter 1118
16.7.6 Sallen-Key Circuit for the Second-Order

Bandpass Filter 1120
16.7.7 Equal R, Equal C Method 1122
16.7.8 Normalization 1123
16.7.9 Delyiannis-Friend Circuit 1125
16.7.10 Normalization 1126
16.8 Second-Order Bandstop Filter Design 1129
16.8.1 Frequency Response 1130
16.8.2 Magnitude Response 1130
16.8.3 Phase Response 1132
16.8.4 Series RLC Bandstop Filter 1132
16.8.5 Parallel RLC Bandstop Filter 1134
16.8.6 Sallen-Key Circuit for the Second-Order Bandstop Filter 1136
16.9 Simulink 1147

SUMMARY 1148
PROBLEMS 1155

CHAPTER 17

ANALOG FILTER DESIGN 1166
17.1 Introduction 1166
17.2 Analog Butterworth LPF Design 1167
17.2.1 Backward Transformation 1168
17.2.2 Finding the Order of the Normalized LPF 1168 17.2.3 Finding the Pole Locations 1171
17.3 Analog Butterworth HPF Design 1182
17.4 Analog Butterworth Bandpass Filter Design 1191
17.5 Analog Butterworth Bandstop Filter Design 1202
17.6 Analog Chebyshev Type 1 LPF Design 1214
17.7 Analog Chebyshev Type 2 LPF Design 1226
17.8 MATLAB 1242

SUMMARY 1245
PROBLEMS 1245
CHAPTER 18
FOURIER SERIES 1259
18.1 Introduction 1259
18.2 Signal Representation Using OrthogonalFunctions1259
18.2.1 Orthogonal Functions 1259
18.2.2 Representation of an Arbitrary Signal by Orthogonal Functions 1270
18.2.3 Trigonometric Fourier Series 1278
18.2.4 Proof of Orthogonality 1279
18.2.6 Proof of Orthogonality 128
18.3 Trigonometric Fourier Series 1283
18.3.1 Trigonometric Fourier Series Using Cosines Only 1286
18.3.2 One-Sided Magnitude Spectrum and One-Sided
Phase Spectrum 1287
18.3.3 DC Level 1296
18.3.4 Time Shifting 1298
18.3.5 Triangular Pulse Train 1302
18.3.6 Sawtooth Pulse Train 1306
18.3.7 Rectified Cosine 1309
18.3.8 Rectified Sine 1313
18.3.9 Average Power of Periodic Signals 1317
18.3.10 Half-Wave Symmetry 1320
18.4 Solving Circuit Problems Using TrigonometricFourier Series 1324
18.5 Exponential Fourier Series 1333
18.5.1 Conversion of Fourier Coefficients 1336
18.5.2 Two-Sided Magnitude Spectrum and Two-Sided
Phase Spectrum 1337
18.5.3 Triangular Pulse Train 1343
18.5.4 Sawtooth Pulse Train 1348
18.5.5 Rectified Cosine 1350
18.5.6 Rectified Sine 1353
18.5.7 Average Power of Periodic Signals 1356
18.6 Properties of Exponential Fourier
Coefficients 1357
18.6.1 DC Level 1357
18.6.2 Linearity Property (SuperpositionPrinciple) 1358
18.6.3 Time-Shifting Property 1358
18.6.4 Time Reversal Property 1364
18.6.5 Time Differentiation Property 1365
18.6.6 Convolution Property 1365
18.7 Solving Circuit Problems Using ExponentialFourier Series 1365
18.8 PSpice and Simulink 1373
SUMMARY 1377
PROBLEMS 1384

CHAPTER 19

FOURIER TRANSFORM 1399
19.1 Introduction 1399
19.2 Definition of Fourier Transform 1399
19.2.1 Symmetries 1403
19.2.2 Finding Fourier Transform from FourierCoefficients 1407
19.3 Properties of Fourier Transform 1408
19.3.1 Linearity Property (Superpositio
Principle) 1411
19.3.2 Time-Shifting Property 1411
19.3.3 Time-Scaling Property 1414
19.3.4 Symmetry Property (Duality Property) 1416
19.3.5 Time-Reversal Property 1420
19.3.6 Frequency-Shifting Property 1422
19.3.7 Modulation Property 1425
19.3.8 Time-Differentiation Property 1428
19.3.9 Frequency-Differentiation Property 1431
19.3.10 Conjugate Property 1432
19.3.11 Integration Property 1433
19.3.12 Convolution Property 1434
19.3.13 Multiplication Property 1437
19.4 Fourier Transform of Periodic Signals 1439
19.4.1 Fourier Series and Fourier Transform
of Impulse Train 1440
19.5 Parseval's Theorem 1443
19.6 Simulink 1449
SUMMARY 1452
PROBLEMS 1452
CHAPTER 20
TWO-PORT CIRCUITS 1457
20.1 Introduction 1457
20.2 Two-Port Circuit 1458
20.2.1 z-Parameters (Impedance Parameters) 1458
20.2.2 y-Parameters (Admittance Parameters) 1464
20.2.3 h-Parameters (Hybrid Parameters) 1470
20.2.4 g-Parameters (Inverse Hybrid Parameters) 1473
20.2.5 ABCD-Parameters (Transmission Parameters,a-Parameters) 147720.2.6 Inverse Transmission Parameters(b-Parameters) 1485
20.3 Conversion of Parameters 1489
20.3.1 Conversion of z-Parameters to All the OtherParameters 1489
20.3.2 Conversion of z-Parameters to
y-Parameters 1489
20.3.3 Conversion of z-Parameters to $A B C D$
Parameters 1490
20.3.4 Conversion of z-Parameters to b-Parameters 1491
20.3.5 Conversion of z-Parameters to h-Parameters 1491
20.3.6 Conversion of z-Parameters to g-Parameters 1492
20.3.7 Conversion of y-Parameters to All the Other Parameters 1493
20.3.8 Conversion of h-Parameters to All the Other Parameters 1494
20.3.9 Conversion of g-Parameters to All the Other Parameters 1494
20.3.10 Conversion of $A B C D$ Parameters to All the Other Parameters 1495
20.3.11 Conversion of b-Parameters to All the Other Parameters 1496
20.4 Interconnection of Two-Port Circuits $\mathbf{1 5 0 0}$
20.4.1 Cascade Connection 1500
20.4.2 Series Connection 1502
20.4.3 Parallel Connection 1505
20.4.4 Series-Parallel Connection 1507
20.4.5 Parallel-Series Connection 1508
20.4.6 Cascade Connection for b-Parameters 1508
20.5 PSpice and Simulink 1509

SUMMARY 1512
PROBLEMS 1513
Answers to Odd-Numbered Questions 1517 Index 1548

This book is intended to be an introductory text on the subject of electric circuits. It provides simple explanations of the basic concepts, followed by simple examples and exercises. When necessary, detailed derivations for the main topics and examples are given to help readers understand the main ideas. MATLAB is a tool that can be used effectively in Electric Circuits courses. In this text, MATLAB is integrated into selected examples to illustrate its use in solving circuit problems. MATLAB can be used to check the answers or solve more complex circuit problems. This text is written for a two-semester sequence or a three-quarters sequence on electric circuits.

Suggested Course Outlines

The following is a list of topics covered in a typical Electric Circuits courses, with suggested course outlines.

ONE-SEMESTER OR -QUARTER COURSE

If Electric Circuits is offered as a one-semester or one-quarter course, Chapters 1 through 12 can be taught without covering, or only lightly covering, sections $1.6,2.10,2.11,3.6,4.7$, $5.6,5.7,5.8,6.7,7.6,7.7,8.8,8.9,9.9,9.10,10.12,11.7,12.5,12.6$, and 12.7 .

TWO-SEMESTER OR -QUARTER COURSES

For two-semester Electric Circuit courses, Chapters 1 through 8, which cover dc circuits, op amps, and the responses of first-order and second-order circuits, can be taught in the first semester. Chapters 9 through 20, which cover alternating current (ac) circuits, Laplace transforms, circuit analysis in the s-domain, two-port circuits, analog filter design and implementation, Fourier series, and Fourier transform, can then be taught in the second semester.

THREE-QUARTER COURSES

For three-quarter Electric Circuit courses, Chapters 1 through 5, which cover dc circuits and op amps, can be taught in the first quarter; Chapters 6 through 13, which cover the responses of first-order and second-order circuits and ac circuits, can be taught in the second quarter, and Chapters 14 through 20, which cover Laplace transforms, circuit analysis in the s-domain, two-port circuits, analog filter design and implementation, Fourier series, and Fourier transform, can be taught in the third quarter.

Depending on the catalog description and the course outlines, instructors can pick and choose the topics covered in the courses that they teach. Several features of this text are listed next.

Features

After a topic is presented, examples and exercises follow. Examples are chosen to expand and elaborate the main concept of the topic. In a step-by-step approach, details are worked out to help students understand the main ideas.

In addition to analyzing RC, RL, and RLC circuits connected in series or parallel in the time domain and the frequency domain, analyses of circuits different from RC, RL, and RLC circuits and connected other than in series and parallel are provided. Also, general input signals that are different from unit step functions are included in the analyses.

In the analog filter design, the specifications of the filter are translated into its transfer function in cascade form. From the transfer function, each section can be designed with appropriate op amp circuits. The normalized component values for each section are found by adopting a simplification method (equal R equal C or unity gain). Then, magnitude scaling and frequency scaling are used to find the final component values. The entire design procedure, from the specifications to the circuit design, is detailed, including the PSpice simulation used to verify the design.

Before the discussion of Fourier series, orthogonal functions and the representation of square integrable functions as a linear combination of a set of orthogonal functions are introduced. The set of orthogonal functions for Fourier series representation consists of cosines and sines. The Fourier coefficients for the square pulse train, triangular pulse train, sawtooth pulse train, and rectified sines and cosines are derived. The Fourier coefficients of any variation of these waveforms can be found by applying the time-shifting property and finding the dc component.

MATLAB can be an effective tool in solving problems in electric circuits. Simple functions such as calculating the equivalent resistance or impedance of parallel connection of resistors, capacitors, and inductors; conversion from Cartesian coordinates to polar coordinates; conversion from polar coordinates to Cartesian coordinates; conversion from the wye configuration to delta configuration; and conversion from delta configuration to wye configuration provide accurate answers in less time. These simple functions can be part of scripts that enable us to find solutions to typical circuit problems.

The complexity of taking the inverse Laplace transforms increases as the order increases. MATLAB can be used to solve equations and to find integrals, transforms, inverse transforms, and transfer functions. The application of MATLAB to circuit analysis is demonstrated throughout the text when appropriate. For example, after finding inverse Laplace transforms by hand using partial fraction expansion, answers from MATLAB are provided as a comparison.

Examples of circuit simulation using OrCAD PSpice and Simulink are given at the end of each chapter. Simulink is a tool that can be used to perform circuit simulations. In Simulink, physical signals can be converted to Simulink signals and vice versa. Simscapes include many blocks that are related to electric circuits. Simulink can be used in computer assignments or laboratory experiments.

The Instructor's Solution Manual for the exercises and end-of-chapter problems is available for instructors. This manual includes MATLAB scripts for selected problems as a check on the accuracy of the solutions by hand.

Overview of Chapters

In Chapter 1, definitions of voltage, current, power, and energy are given. Also, independent voltage source and current source are introduced, along with dependent voltage sources and current sources.

In Chapter 2, nodes, branches, meshes, and loops are introduced. Ohm's law is explained. Kirchhoff's current law (KCL), Kirchhoff's voltage law (KVL), the voltage divider rule, and the current divider rule are explained with examples.

In Chapter 3, nodal analysis and mesh analysis are discussed in depth. The nodal analysis and mesh analysis are used extensively in the rest of the text.

Chapter 4 introduces circuit theorems that are useful in analyzing electric circuits and electronic circuits. The circuit theorems discussed in this chapter are the superposition
principle, source transformations, Thévenin's theorem, Norton's theorem, and maximum power transfer.

Chapter 5 introduces op amp circuits. Op amp is a versatile integrated circuit (IC) chip that has wide-ranging applications in circuit design. The concept of the ideal op amp model is explained, along with applications in sum and difference, instrumentation amplifier, and current amplifier. Detailed analysis of inverting configuration and noninverting configuration is provided.

In Chapter 6, the energy storage elements called capacitors and inductors are discussed. The current voltage relation of capacitors and inductors are derived. The energy stored on the capacitors and inductors are presented.

In Chapter 7, the transformation of RC and RL circuits to differential equations and solutions of the first-order differential equations to get the responses of the circuits are presented. In the general first-order circuits, the input signal can be dc, ramp signal, exponential signal, or sinusoidal signal.

In Chapter 8, the transformation of series RLC and parallel RLC circuits to the secondorder differential equations, as well as solving the second-order differential equations to get the responses of the circuits are presented. In the general second-order circuits, the input signal can be dc, ramp signal, exponential signal, or sinusoidal signal.

Chapter 9 introduces sinusoidal signals, phasors, impedances, and admittances. Also, transforming ac circuits to phasor-transformed circuits is presented, along with analyzing phasor transformed circuits using KCL, KVL, equivalent impedances, delta-wye transformation, and wye-delta transformation.

The analysis of phasor-transformed circuits is continued in Chapter 10 with the introduction of the voltage divider rule, current divider rule, nodal analysis, mesh analysis, superposition principle, source transformation, Thévenin equivalent circuit, Norton equivalent circuit, and transfer function. This analysis is similar to the one for resistive circuits with the use of impedances.

Chapter 11 presents information on ac power. The definitions of instantaneous power, average power, reactive power, complex power, apparent power, and power factor are also given, and power factor correction is explained with examples.

As an extension of ac power, the three-phase system is presented in Chapter 12. The connection of balanced sources (wye-connected or delta-connected) to balanced loads (wye-connected or delta connected) are presented, both with and without wire impedances.

Magnetically coupled circuits, which are related to ac power, are discussed in Chapter 13. Mutual inductance, induced voltage, dot convention, linear transformers, and ideal transformers are introduced.

The Laplace transform is introduced in Chapter 14. The definition of the transform, region of convergence, transform, and inverse transform are explained with examples. Various properties of Laplace transform are also presented with examples.

The discussion on Laplace transform is continued in Chapter 15. Electric circuits can be transformed into an s-domain by replacing voltage sources and current sources to the s-domain and replacing capacitors and inductors to impedances. The circuit laws and theorems that apply to resistive circuits also apply to s-domain circuits. The time domain signal can be obtained by taking the inverse Laplace transform of the s-domain representation. The differential equations in the time domain are transformed to algebraic equations in the s-domain. The transfer function in the s-domain is defined as the ratio
of the output signal in the s-domain to the input signal in the s-domain. The concept of convolution is introduced with a number of examples. Also, finding the convolution using Laplace transforms are illustrated in the same examples. Plotting the magnitude response and phase response of a circuit or a system using the Bode diagram is introduced.

The first-order and the second-order analog filters that are building blocks for the higher-order filters are presented in Chapter 16. The filters can be implemented by interconnecting passive elements consisting of resistors, capacitors, and inductors. Alternatively, filters can be implemented utilizing op amp circuits. Sallen and Key circuits for implementing second-order filters are discussed as well, along with design examples.

The discussion on analog filter design is extended in Chapter 17. A filter is designed to meet the specifications of the filter. The transfer function that satisfies the specification is found. From the transfer function, the corner frequency and Q value can be found. Then, the normalized component values and scaled component values are found. PSpice simulations can be used to verify the design.

Orthogonal functions and the representation of signals as a linear combination of a set of orthogonal functions are introduced in Chapter 18. If the set of orthogonal functions consists of harmonically related sinusoids or exponential functions, the representation is called the Fourier series. Fourier series representation of common signals, including the square pulse train, triangular pulse train, sawtooth waveform, and rectified cosine and sine, are presented in detail, with examples. The derivation and application of the time-shifting property of Fourier coefficients are provided. In addition, the application of the Fourier series representation in solving circuit problems are presented, along with examples.

As the period of a periodic signal is increased to infinity, the signal becomes nonperiodic, the discrete line spectrums become a continuous spectrum, and multiplying the Fourier coefficients by the period produces the Fourier transform, as explained in Chapter 19. Important properties of the Fourier transform, including time shifting, frequency shifting, symmetry, modulation, convolution, and multiplication, are introduced, along with interpretation and examples.

Two-port circuits are defined and analyzed in Chapter 20. Depending on which of the parameters are selected as independent variables, there are six different representations for two-port circuits. The coefficients of the representations are called parameters. The six parameters ($z, y, h, g, A B C D, b)$ for two-port circuits are presented along with examples. The conversion between the parameters and the interconnection of parameters are provided in this chapter.

Instructor Resources

Cengage Learning's secure, password-protected Instructor Resource Center contains helpful resources for instructors who adopt this text. These resources include Lecture Note Microsoft PowerPoint slides, test banks, and an Instructor's Solution Manual, with detailed solutions to all the problems from the text. The Instructor Resource Center can be accessed at https://login.cengage.com.

MindTap Online Course

Electric Circuits is also available through MindTap, Cengage Learning's digital course platform. The carefully crafted pedagogy and exercises in this textbook are made even more effective by an interactive, customizable eBook, automatically graded assessments, and a full suite of study tools.

$<$	CHAPTER 6: CAPACIORS AND INDUCTORS
¢	Chapter 6: Capacitors and Inductors Introduction - Capacitors - Series and Parallel Connection of Capacitors - Op Amp Integrator and Op Amp Differentiator - Inductors - Series and Parallel Connection of Inductors - PSpice and Simulink - Summary
(Chapter 6 Lecture Watch this lecture on Capacitors and Inductors.
5	Chapter 6 Quiz After you've read Chapter 6, answer the questions in this quiz. No Submissions \square COUNTS TOWARD GRADE
\square	Chapter 6 Drop Box Use this drop box to submit any other assignments your instructor has assigned to you. No Submissions \square
cNow	As an instructor using MindTap, you have at your fingertips the full text and a unique set of tools, all in an interface designed to save you time. MindTap makes it easy for instructors to build and customize their course so that they can focus on the most relevant material while also lowering costs for students. Stay connected and informed through real-time student tracking that provides the opportunity to adjust your course as needed based on analytics of interactivity and performance. End-of-chapter assessments test students' knowledge of topics in each chapter. In addition, a curated collection of lecture videos helps students better understand key concepts as they progress through the course.

HOW DOES MINDTAP BENEFIT INSTRUCTORS?

- Instructors can build and personalize their courses by integrating their own content into the MindTap Reader (like lecture notes or problem sets to download) or pull from sources such as Really Simple Syndication (RSS) feeds, YouTube videos, websites, and more. Control what content students see with a built-in learning path that can be customized to your syllabus.
- MindTap saves time by providing instructors and their students with automatically graded assignments and quizzes. These problems include immediate, specific feedback so students know exactly where they need more practice.
- The Message Center helps instructors to contact students quickly and easily from MindTap. Messages are communicated directly to each student via the communication medium (email, social media, or even text messages) designated by the student.
- StudyHub is a valuable tool that allows instructors to deliver important information and empowers students to personalize their experience. Instructors can choose to annotate the text with notes and highlights, share content from the MindTap Reader, and create flashcards to help their students focus and succeed.
- The Progress App lets instructors know exactly how their students are doing (and where they might be struggling) with live analytics. They can see overall class engagement and drill down into individual student performance, enabling them to adjust their course to maximize student success.

HOW DOES MINDTAP BENEFIT YOUR STUDENTS?

- The MindTap Reader adds the ability to have content read aloud, to print from the MindTap Reader, and to take notes and highlight text, while also capturing them within the linked StudyHulb App.
- The MindTap Mobile App keeps students connected with alerts and notifications, while also providing them with on-the-go study tools like flashcards and quizzing, helping them manage their time efficiently.
- Flashcardls are prepopulated to provide a jump start on studying, and students and instructors also can create customized cards as they move through the course.
- The Progress App allows students to monitor their individual grades, as well as their performance level compared to the class average. This not only helps them stay on track in the course, but also motivates them to do more, and ultimately to do better.
- The unique Studylyub is a powerful, single-destination studying tool that empowers students to personalize their experience. They can quickly and easily access all notes and highlights marked in the MindTap Reader, locate bookmarked pages, review notes and flashcards shared by their instructor, and create custom study guides.

For more information about MindTap for Engineering, or to schedule a demonstration, please call (800) 354-9706 or email higheredcs@cengage.com. For instructors outside the United States, visit http://www.cengage.com/contact/ to locate your regional office.

Acknowledgments

I wish to acknowledge and thank the Global Engineering team at Cengage Learning for their dedication to this new book: Timothy Anderson, Product Director; Ashley Kaupert, Associate Media Content Developer; Kim Kusnerak, Senior Content Project Manager; Kristin Stine, Marketing Manager; Elizabeth Brown and Brittany Burden, Learning Solutions Specialists; and Alexander Sham, Product Assistant. They have skillfully guided every aspect of this text's development and production to successful completion. I also would like to express my appreciation to the following reviewers, whose helpful comments and suggestions improved the manuscript:

Elizabeth Brauer, Northern Arizona University
Mario Edgardo Magana, Oregon State University
Malik Elbuluk, The University of Akron
Timothy A. Little, Dalhousie University
Ahmad Nafisi, California Polytechnic State University - San Luis Obispo
Scott Norr, University of Minnesota-Duluth
Nadipuram Prasad, New Mexico State University
Vignesh Rajamani, Oklahoma State University
Pradeepa Yahampath, University of Manitoba

Dr. James S. Kang is a professor of electrical and computer engineering at the California State Polytechnic University, Pomona, commonly known as Cal Poly Pomona. Cal Poly Pomona is famous for its laboratory-oriented, hands-on approach to engineering education. Most of the electrical and computer engineering courses offered there include a companion laboratory course. Students design, build, and test practical circuits in the laboratory based on the theory that they learned in the lecture course. This book, Electric Circuits, incorporates this philosophy.

Voltage, Current, Power, and Sources

1.1 Introduction

The seven base units of the International System of Units (SI), along with derived units relevant to electrical and computer engineering, are presented in this chapter. The definitions of the terms voltage, current, and power are given as well.

A voltage source with voltage V_{s} provides a constant potential difference to the circuit connected between the positive terminal and the negative terminal. A current source with current I_{s} provides a constant current of I_{s} amperes to the circuit connected to the two terminals. If the voltage from the voltage source is constant with time, the voltage source is called the direct current (dc) source. Likewise, if the current from the current source is constant with time, the current source is called the $d c$ source. If the voltage from the voltage source is a sinusoid, the voltage source is called alternating current (ac) voltage source. Likewise, if the current from the current source is a sinusoid, the current source is called the ac current source.

The voltage or current on the dependent sources depends solely on the controlling voltage or controlling current. Dependent sources are introduced along with circuit symbols.

The elementary signals that are useful throughout the text are introduced next. The elementary signals are Dirac delta function, step function, ramp function, rectangular pulse, triangular pulse, and exponential decay.

1.2 International System of Units

The International System of Units (SI) is the modern form of the metric system derived from the meter-kilogram-second (MKS) system. The SI system is founded on seven base units for the seven quantities assumed to be mutually independent. Tables 1.1-1.6, which
give information on the SI system, come from the NIST Reference on Constants, Units, and Uncertainty (http://physics.nist.gov/cuu/Units/units.html), the official reference of the National Institute of Standards and Technology.

A meter is defined as the length of a path traveled by light in a vacuum during a time interval of $1 / 299,792,458\left[\left(\approx 1 /\left(3 \times 10^{8}\right)\right]\right.$ of a second.

A kilogram is equal to the mass of the international prototype of the kilogram.

| TABLE 1.1 | Base Quantity | Name | Symbol |
| :---: | :--- | :--- | :--- | :--- |
| SI Base Units. | Length | meter | m |
| | Mass | kilogram | kg |
| | Time | second | s |
| | Electric current | ampere | A |
| | Thermodynamic temperature | kelvin | K |
| | Amount of a substance | mole | mol |
| | Luminous intensity | candela | cd |

TABLE 1.2	Derived Quantity	Name	Symbol
Examples of SI Derived Units.	Area	square meter	m^{2}
	Volume	cubic meter	m^{3}
	Speed, velocity	meter per second	m / s
	Acceleration	meter per second squared	$\mathrm{m} / \mathrm{s}^{2}$
	Wave number	reciprocal meter	m^{-1}
	Mass density	kilogram per cubic meter	$\mathrm{kg} / \mathrm{m}^{3}$
	Specific volume	cubic meter per kilogram	$\mathrm{m}^{3} / \mathrm{kg}$
	Current density	ampere per square meter	$\mathrm{A} / \mathrm{m}^{2}$
	Magnetic field strength	ampere per meter	A/m
	Luminance	candela per square meter	$\mathrm{cd} / \mathrm{m}^{2}$

| TABLE 1.3 |
| :---: | :--- | :--- | :--- | :--- | | SI Derived Units
 with Special
 Names and
 Symbols. | Derived Quantity | Plane angle | Name |
| :---: | :--- | :--- | :--- |

TABLE 1.4	Derived Quantity	Name	Symbol
Examples of SI Derived Units with Names and Symbols (Including Special Names and Symbols.)	Dynamic viscosity	Pascal second	$\mathrm{Pa} \cdot \mathrm{s}$
	Moment of force	newton meter	$\mathrm{N} \cdot \mathrm{m}$
	Surface tension	newton per meter	N / m
	Angular velocity	radian per second	$\mathrm{rad} / \mathrm{s}$
	Angular acceleration	radian per second squared	$\mathrm{rad} / \mathrm{s}^{2}$
	Heat flux density, irradiance	watt per square meter	$\mathrm{W} / \mathrm{m}^{2}$
	Thermal conductivity	watt per meter kelvin	$\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$
	Energy density	joule per cubic meter	$\mathrm{J} / \mathrm{m}^{3}$
	Electric field strength	volt per meter	V / m
	Electric charge density	coulomb per cubic meter	$\mathrm{C} / \mathrm{m}^{3}$
	Electric flux density	coulomb per square meter	$\mathrm{C} / \mathrm{m}^{2}$
	Permittivity	farad per meter	F/m
	Permeability	henry per meter	H/m
	Exposure (X- and γ-rays)	coulomb per kilogram	C / kg

TABLE 1.5	Prefix	Symbol	Magnitude
Metric Prefixes.	yocto	y	10^{-24}
	zepto	z	10^{-21}
	atto	a	10^{-18}
	femto	f	10^{-15}
	pico	p	10^{-12}
	nano	n	10^{-9}
	micro	μ	10^{-6}
	milli	m	10^{-3}
	centi	c	10^{-2}
	deci	d	10^{-1}
	deka	da	10^{1}
	hecto	h	10^{2}
	kilo	k	10^{3}
	mega	M	10^{6}
	giga	G	10^{9}
	tera	T	10^{12}
	peta	P	10^{15}
	exa	E	10^{18}
	zetta	Z	10^{21}
	yotta	Y	10^{24}

TABLE 1.6	Name	Symbol	Value in SI Units
Units Outside the SI That Are Accepted for Use with the SI System.	Minute (time)	min	$1 \mathrm{~min}=60 \mathrm{~s}$
	Hour	h	$1 \mathrm{~h}=60 \mathrm{~min}=3600 \mathrm{~s}$
	Day	d	$1 \mathrm{~d}=24 \mathrm{~h}=86,400 \mathrm{~s}$
	Degree (angle)	-	$1^{\circ}=(\pi / 180) \mathrm{rad}$
	Minute (angle)	'	$1^{\prime}=(1 / 60)^{\circ}=(\pi / 10,800) \mathrm{rad}$
	Second (angle)	"	$1^{\prime \prime}=(1 / 60)^{\prime}=(\pi / 648,000) \mathrm{rad}$
	Liter	L	$1 \mathrm{~L}=1 \mathrm{dm}^{3}=10^{-3} \mathrm{~m}^{3}$
	Metric ton	t	$1 \mathrm{t}=1000 \mathrm{~kg}$
	Neper	Np	$1 \mathrm{~Np}=20 \log _{10}(\mathrm{e}) \mathrm{dB}=20 / \ln (10) \mathrm{dB}$
	Bel	B	$1 \mathrm{~B}=(1 / 2) \ln (10) \mathrm{Np}, 1 \mathrm{~dB}=0.1 \mathrm{~B}$
	Electronvolt	eV	$1 \mathrm{eV}=1.60218 \times 10^{-19} \mathrm{~J}$
	Unified atomic mass unit	u	$1 \mathrm{u}=1.66054 \times 10^{-27} \mathrm{~kg}$
	Astronomical unit	ua	1 ua $=1.49598 \times 10^{11} \mathrm{~m}$

[^0]A second is the duration of $9,192,631,770$ periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom.

An ampere is the constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newtons per meter of length.

A kelvin, is $1 / 273.16$ of the thermodynamic temperature of the triple point of water.
A mole is the amount of substance of a system that contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12 ; its symbol is moll. When the mole is used, the elementary entities must be specified; they may be atoms, molecules, ion, electrons, other particles, or specified groups of such particles.

The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10^{12} hertz (Hz) and that has the radiant intensity in that direction of $1 / 683$ watt per steradian.

1.3 Charge, Voltage, Current, and Power

1.3.1 ELECTRIC CHARGE

Atoms are the basic building blocks of matter. The nucleus of atoms consists of protons and neutrons. Electrons orbit around the nucleus. Protons are positively charged, and electrons are negatively charged, while neutrons are electrically neutral. The amount of charge on the proton is given by

$$
e=1.60217662 \times 10^{-19} C
$$

Here, the unit for charge is in coulombs (C).

$$
-e=-1.60217662 \times 10^{-19} C
$$

Notice that the charge is quantized as the integral multiple of e. Since there are equal numbers of protons and electrons in an atom, it is electrically neutral. When a plastic is rubbed by fur, some electrons from the fur are transferred to the plastic. Since the fur lost electrons and the plastic gained them, the former is positively charged and the latter negatively charged. When the fur and the plastic are placed close together, they attract each other. Opposite charges attract, and like charges repel. However, since the electrons and protons are not destroyed, the total amount of charge remains the same. This is called the conservation of charge.

1.3.2 ELECTRIC FIELD

According to Coulomb's law, the magnitude of force between two charged bodies is proportional to the charges Q and q and inversely proportional to the distance squared; that is,

$$
\begin{equation*}
F=\frac{1}{4 \pi \varepsilon} \frac{Q q}{r^{2}} \tag{1.1}
\end{equation*}
$$

Here, ε is permittivity of the medium. The permittivity of free space, ε_{0}, is given by

$$
\begin{equation*}
\varepsilon_{0}=\frac{1}{4 \pi c^{2} 10^{-7}}(\mathrm{~F} / \mathrm{m})=8.8541878176 \times 10^{-12}(\mathrm{~F} / \mathrm{m}) \tag{1.2}
\end{equation*}
$$

Here, c is the speed of light in the vacuum, given by $c=299,792,458 \mathrm{~m} / \mathrm{s} \approx 3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The unit for permittivity is farads per meter $(\mathrm{F} / \mathrm{m})$. The direction of the force coincides with the line connecting the two bodies. If the charges have the same polarity, the two bodies
repel each other. On the other hand, if the charges have the opposite polarity, they attract each other.

If a positive test charge with magnitude q is brought close to a positive point charge with magnitude Q, the test charge will have a repulsive force. The magnitude of the force is inversely proportional to the distance squared between the point charge and the test charge. The presence of the point charge creates a field around it, where charged particles experience force. This is called an electric field, which is defined as the force on a test charge q as the charge q decreases to zero; that is,

$$
\begin{equation*}
\boldsymbol{E}=\lim _{q \rightarrow 0} \frac{\boldsymbol{F}}{q} \quad(\mathrm{~V} / \mathrm{m}) \tag{1.3}
\end{equation*}
$$

The electric field is a force per unit charge. The electric field \boldsymbol{E} is a vector quantity whose direction is the same as that of the force. Figure 1.1 shows the electric field for a positive point charge and charged parallel plates.

FIGURE 1.1

Electric field for
(a) a point charge and (b) parallel plates.

(a)

(b)

If an object with charge q is placed in the presence of electric field \boldsymbol{E}, the object will experience a force as follows:

$$
\begin{equation*}
\boldsymbol{F}=q \boldsymbol{E} \tag{1.4}
\end{equation*}
$$

For a positive point charge Q, the electric field is given by

$$
\begin{equation*}
\boldsymbol{E}=\frac{1}{4 \pi \varepsilon} \frac{Q}{r^{2}} \boldsymbol{a}_{r} \tag{1.5}
\end{equation*}
$$

where \boldsymbol{a}_{r} is a unit vector in the radial direction from the positive point charge Q. For parallel plates with area S per plate, distance d between the plates, the electric field is constant within the plates and the magnitude of the electric field is given by

$$
\begin{equation*}
E=\frac{Q}{\varepsilon S} \tag{1.6}
\end{equation*}
$$

The direction of the field is from the plate with positive charges to the plate with negative charges, as shown in Figure 1.1(b).

1.3.3 VOLTAGE

If a positive test charge $d q$ is moved against the electric field created by a positive charge, an external agent must apply work to the test charge. Let $d w_{A B}$ be the amount of the work
needed to move the test charge from B (initial) to A (final). Here, $d w_{A B}$ is the potential energy in joules. Then, the potential difference between points A and B is defined as the work done per unit charge against the force; that is,

$$
\begin{equation*}
v_{A B}=v_{A}-v_{B}=\frac{d w_{A B}}{d q} \quad(\mathrm{~J} / \mathrm{C}) \tag{1.7}
\end{equation*}
$$

The unit for the potential difference is joules per coulomb, which is also called a volt (V):

$$
1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}
$$

The potential difference between A and B is called voltage. The potential difference between points A and B is given by

$$
\begin{equation*}
v_{A B}=v_{A}-v_{B}=-\int_{B}^{A} \boldsymbol{E} \cdot d \ell \tag{1.8}
\end{equation*}
$$

The negative sign implies that moving against the electric field increases the potential. For a positive point charge Q at origin with an electric field given by Equation (1.5), the potential difference between two points A and B with distances r_{A} and r_{B}, respectively, from Q is given by

$$
\begin{equation*}
v_{A B}=v_{A}-v_{B}=-\int_{r_{B}}^{r_{A}} \frac{1}{4 \pi \varepsilon} \frac{Q}{r^{2}} d r=-\left.\frac{Q}{4 \pi \varepsilon}\left(\frac{-1}{r}\right)\right|_{r_{B}} ^{r_{A}}=\frac{Q}{4 \pi \varepsilon}\left(\frac{1}{r_{A}}-\frac{1}{r_{B}}\right) \mathrm{V} \tag{1.9}
\end{equation*}
$$

Notice that the integral of $1 / r^{2}$ is $-1 / r$. If r_{B} is infinity, the potential difference is

$$
\begin{equation*}
v_{A B}=v_{A}-v_{B}=v_{A}=\frac{Q}{4 \pi \varepsilon r_{A}} \mathrm{~V} \tag{1.10}
\end{equation*}
$$

The potential is zero at infinity. This is a reference potential. For the parallel plates shown in Figure 1.1(b), the potential difference between A and B is

$$
\begin{equation*}
v=E d=\frac{Q}{\varepsilon S} d \tag{1.11}
\end{equation*}
$$

If the potential at B is set at zero $\left(v_{B}=0\right)$, the potential at point A is given by

$$
\begin{equation*}
v_{A}=\frac{d w_{A}}{d q} \quad(\mathrm{~J} / \mathrm{C}) \tag{1.12}
\end{equation*}
$$

or simply

$$
\begin{equation*}
v=\frac{d w}{d q} \quad(\mathrm{~J} / \mathrm{C}) \tag{1.13}
\end{equation*}
$$

The potential difference v is called voltage. A battery is a device that converts chemical energy to electrical energy. When a positive charge is moved from the negative terminal to the positive terminal through the $12-\mathrm{V}$ battery, the battery does 12 joules of work on each unit charge. The potential energy of the charge increases by 12 joules. The battery provides energy to the rest of the circuit.

1.3.4 CURRENT

In the absence of an electric field, the free electrons in the conduction band of conductors such as copper wire make random movements. The number of electrons crossing a cross-sectional area of the copper wire from left to right will equal the number of electrons crossing the same cross-sectional area from right to left. The net number of electrons crossing this area will be zero. When an electric field is applied along the copper wire, the negatively charged electrons will move toward the direction of higher potential. The current is defined as the total amount of charge q passing through a cross-sectional area in t seconds; that is,

$$
\begin{equation*}
I=\frac{q}{t} \tag{1.14}
\end{equation*}
$$

The unit for the current is coulombs per second (C / s) or amperes (A). If the amount of charge crossing the area changes with time, the current is defined as

$$
\begin{equation*}
i(t)=\frac{d q(t)}{d t} \tag{1.15}
\end{equation*}
$$

The direction of current is defined as the direction of positive charges. Since the charge carriers inside the conductors are electrons, the direction of electrons is opposite to the direction of the current. Figure 1.2 shows the directions of the electric field, current, and electron inside a conductor.

FIGURE 1.2

The directions of E, I, and e.

The charge transferred between time t_{1} and t_{2} can be obtained by integrating the current from t_{1} and t_{2}; that is,

$$
\begin{equation*}
q=\int_{t_{1}}^{t_{2}} i(\lambda) d \lambda \tag{1.16}
\end{equation*}
$$

EXAMPLE 1.1

The charge flowing into a circuit element for $t \geq 0$ is given by

$$
q(t)=2 \times 10^{-3}\left(1-e^{-1000 t}\right) \text { coulomb }
$$

Find the current flowing into the element for $t \geq 0$.

$$
i(t)=\frac{d q(t)}{d t}=2 \times 10^{-3} \times 1000 e^{-1000 t} \quad A=2 e^{-1000 t} \quad A \text { for } t \geq 0
$$

Exercise 1.1

The charge flowing into a circuit element for $t \geq 0$ is given by

$$
q(t)=4 \times 10^{-3} e^{-2000 t} \text { coulomb }
$$

Find the current flowing into the element for $t \geq 0$.
Answer:

$$
i(t)=\frac{d q(t)}{d t}=-8 e^{-2000 t} \quad A \text { for } t \geq 0
$$

EXAMPLE 1.2

The current flowing into a circuit element is given by

$$
i(t)=5 \sin (2 \pi 10 t) \mathrm{mA}
$$

for $t \geq 0$. Find the charge flowing into the device for $t \geq 0$. Also, find the total charge entered into the device at $t=0.05 \mathrm{~s}$.

$$
\begin{aligned}
q(t) & =\int_{0}^{t} i(\lambda) d \lambda=\frac{5 \times 10^{-3}}{2 \pi 10}[1-\cos (2 \pi 10 t)] \\
& =7.9577 \times 10^{-5}[1-\cos (2 \pi 10 t)] \text { coulomb }
\end{aligned}
$$

At $t=0.05 \mathrm{~s}$, we have

$$
q(0.05)=1.5915 \times 10^{-4}[1-\cos (2 \pi 10 \times 0.05)]=1.5915 \times 10^{-4} \text { coulombs }
$$

Exercise 1.2

The current flowing into a circuit element is given by

$$
i(t)=5 \cos (2 \pi 10 t) \mathrm{mA}
$$

for $t \geq 0$. Find the charge flowing into the device for $t \geq 0$. Also, find the total charge entered into the device at $t=0.0125 \mathrm{~s}$.

Answer:

$$
\begin{aligned}
& q(t)=\int_{0}^{t} i(\lambda) d \lambda=\frac{5 \times 10^{-3}}{2 \pi 10} \sin (2 \pi 10 t)=7.9577 \times 10^{-5} \sin (2 \pi 10 t) \text { coulombs } \\
& q(0.0125)=7.9577 \times 10^{-5} \sin (2 \pi 10 \times 0.0125)=5.6270 \times 10^{-5} \text { coulombs }
\end{aligned}
$$

FICURE 1.3

(a) Power is positive.
(b) Power is negative.

1.3.5 POWER

The battery provides a constant potential difference (voltage) of v volts from the negative terminal to the positive terminal. When a positive charge $d q$ is moved from the negative terminal to the positive terminal through the battery, the potential energy is increased by $d q v=d w$. When the positive charge $d q$ moves through the rest of the circuit from the positive terminal to the negative terminal, the potential energy is decreased by the same amount $(d q v)$. The rate of potential energy loss is given by

$$
\begin{equation*}
p=\frac{d w}{d t}=\frac{d q v}{d t}=i v \tag{1.17}
\end{equation*}
$$

The rate of energy loss is defined as power. Equation (1.17) can be rewritten as

$$
\begin{equation*}
d w=d q v=p d t \tag{1.18}
\end{equation*}
$$

The energy is the product of power and time. If Equation (1.18) is integrated as a function of time, we get

$$
\begin{equation*}
w(t)=\int_{-\infty}^{t} p(\lambda) d \lambda \tag{1.19}
\end{equation*}
$$

According to Equation (1.19), the energy is the integral of power. As shown in Equation (1.17), power is the derivative of energy. Taking the derivative of Equation (1.19), we obtain

$$
\begin{equation*}
p(t)=\frac{d w(t)}{d t} \tag{1.20}
\end{equation*}
$$

If the voltage and the current are time-varying, the power is also time-varying. If the voltage and current are expressed as a function of time, Equation (1.17) can be written as

$$
\begin{equation*}
p(t)=i(t) v(t) \tag{1.21}
\end{equation*}
$$

The power given by Equation (1.21) is called instantaneous power. According to Equation (1.21), instantaneous power is the product of current and voltage as a function of time. In the passive sign convention, if the direction of current is from the positive terminal of a device, through the device, and to the negative terminal of the device [as shown in Figure 1.3(a)], the power is positive. On the other hand, if the current leaves the positive terminal of a device, flows through the rest of the circuit, and enters the negative terminal of the device [as shown in Figure 1.3(b)], the power is negative.

If power is positive [i.e., $p(t)>0$], the element is absorbing power. On the other hand, if power is negative, the element is delivering (supplying) power. In a given circuit, the total absorbed power equals the total delivered or supplied power. This is called conservation of power.

EXAMPLE 1.3

Let the voltage across an element be $v(t)=100 \cos (2 \pi 60 t) \mathrm{V}$, and the current though the element from positive terminal to negative terminal be $i(t)=5 \cos (2 \pi 60 t)$ A for $t \geq 0$. Find the instantaneous power $p(t)$ and plot $p(t)$.

$$
\begin{aligned}
p(t) & =i(t) v(t)=5 \cos (2 \pi 60 t) \times 100 \cos (2 \pi 60 t)=500 \cos ^{2}(2 \pi 60 t) \\
& =250+250 \cos (2 \pi \times 120 t) \mathrm{W}
\end{aligned}
$$

The power $p(t)$ is shown in Figure 1.4. Since $p(t) \geq 0$ for all t, the element is not delivering power any time. On average, the element absorbs 250 W of power.

Exercise 1.3

Let the voltage across an element be $v(t)=100 \cos (2 \pi 60 t) \mathrm{V}$ and the current though the element from positive terminal to negative terminal be $i(t)=6 \sin (2 \pi 60 t)$ A for $t \geq 0$. Find the instantaneous power $p(t)$ and plot $p(t)$.

$$
p(t)=i(t) v(t)=6 \sin (2 \pi 60 t) \times 100 \cos (2 \pi 60 t)=300 \sin (2 \pi 120 t) \mathrm{W} .
$$

The power $p(t)$ is shown in Figure 1.5. Since $p(t)>0$ half of the time and $p(t)<0$ the other half of the time, the element absorbs power for $1 / 240 \mathrm{~s}$, then delivers power for the next $1 / 240 \mathrm{~s}$, and then repeats the cycle. On average, the element does not absorb any power.

FIGURE 1.5

Power $p(t)$.

1.4 Independent Sources

FIGURE 1.6

Circuit symbols for voltage sources.

(a)
(b)

A voltage source with voltage V_{s} provides a constant potential difference to the circuit connected between the positive terminal and the negative terminal. The circuit notations for the voltage source are shown in Figure 1.6.

If a positive charge Δq is moved from the negative terminal to the positive terminal through the voltage source, the potential energy of the charge is increased by $\Delta q V_{s}$. If a negative charge with magnitude Δq is moved from the positive terminal to the negative terminal through the voltage source, the potential energy of the charge is increased by $\Delta q V_{s}$. A battery is an example of a voltage source.

FIGURE 1.7

A circuit symbol for the current source.

A current source with current I_{s} provides a constant current of I_{s} amperes to the circuit connected to the two terminals. The circuit notation for the current source is shown in Figure 1.7.

1.4.1 DIRECT CURRENT SOURCES AND ALTERNATING CURRENT SOURCES

If the voltage from the voltage source is constant with time, the voltage source is called the direct current (dc) source. Likewise, if the current from the current source is constant with time, the current source is called the direct current (dc) source.

If the voltage from the voltage source is a sinusoid, as shown in Figure 1.8, the voltage source is called alternating current (ac) voltage source. Likewise, if the current from the current source is a sinusoid, the current source is called alternating current (ac) current source. A detailed discussion of ac signals is given in Chapter 9. The circuit notation for an ac voltage source and ac current source are shown in Figure 1.9. The phase is given in degrees. The circuit notation for dc voltage shown in Figure 1.6(a) and the circuit notation for dc current shown in Figure 1.7 are also used for ac voltage and ac current, respectively.

FIGURE 1.8

Plot of a cosine wave with period T, amplitude V_{m}, and phase zero.

FIGURE 1.9

Circuit symbols for (a) ac voltage source; (b) ac current source.

FIGURE 1.10

(a)

(b)

When dc voltage sources are connected in series, they can be combined into a single equivalent dc voltage source, as shown in Figure 1.10, where $V_{3}=V_{1}+V_{2}=4.5 \mathrm{~V}+7.5 \mathrm{~V}=12 \mathrm{~V}$. If there are other components, such as the resistors between V_{1} and V_{2} in the circuit shown in Figure 1.10, the voltage sources can be combined, so long as all the components are connected in series. Resistors are discussed further in Chapter 2.

When dc current sources are connected in parallel, they can be combined into a single equivalent dc current source, as shown in Figure 1.11 , where $I_{3}=I_{1}+I_{2}=3 \mathrm{~A}+5 \mathrm{~A}=8 \mathrm{~A}$. If other components such as resistors are connected in parallel to I_{1} and I_{2} in the circuit shown in Figure 1.11, the current sources can be combined, so long as all the components are connected in parallel between the same points.

FIGURE 1.11

An equivalent current source.

EXAMPLE 1.4

Redraw the circuit shown in Figure 1.12 with one voltage source and one current source, without affecting the voltages across and currents through the resistors in the circuit.

FIGURE 1.12

Circuit for
EXAMPLE 1.4.

Since V_{1} and V_{2} are part of a single wire, they can be combined into the single voltage source V_{3}. Since V_{2} has the same polarity as V_{1}, the value of V_{3} is given by

$$
V_{3}=V_{1}+V_{2}=5 \mathrm{~V}+3 \mathrm{~V}=8 \mathrm{~V}
$$

Since I_{1} and I_{2} are connected between the same points in the circuit, they can be combined into the single current source I_{3}. Since I_{2} has the same polarity as I_{1}, the value of I_{3} is given by

$$
I_{3}=I_{1}+I_{2}=3 \mathrm{~mA}+2 \mathrm{~mA}=5 \mathrm{~mA}
$$

The equivalent circuit, with one voltage source and one current source, is shown in Figure 1.13.

Example 1.4 continued

FIGURE 1.13
A circuit with one current source and one voltage source.

Exercise 1.4

Redraw the circuit shown in Figure 1.14 with one voltage source and one current source, without affecting the voltages across and currents through the resistors in the circuit.

FIGURE 1.14

Circuit for EXERCISE 1.4.

Answer:

The equivalent circuit with one voltage source and one current source is shown in Figure 1.15.

FIGURE 1.15

A circuit with one current source and one voltage source.

[^0]: Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203

